Применение расширяющихся тампонажных материалов для ремонтно-изоляционных работ на месторождениях ПАО «Газпром Нефть»

Хасаншин Р. Н., Михайлов С.А. ПАО «Газпромнефть-НТЦ»

Журнал «Инженерная практика»

Причинами обводнения скважинной продукции при эксплуатации нефтяных скважин становятся негерметичность эксплуатационной колонны (НЭК), заколонная циркуляция (ЗКЦ), прорыв нагнетаемой воды по наиболее проницаемым пропласткам и т. д. При этом проведение ремонтно-изоляционных работ (РИР) часто осложняется различными факторами, такими как большой интервал изоляции (при отключении пластов и интервалов негерметичности), отсутствие количественной и качественной оценки доли поступления водопритока из нецелевого интервала, наличие неоднородного цементного камня за эксплуатационной колонной, высокие перепады давления, а также сложная инклинометрия скважины. Все эти факторы влияют на выбор водоизоляционного состава для проведения ремонтных работ.

В предлагаемой Вашему вниманию статье представлен опыт применения расширяющегося тампонажного материала (РТМ) при проведении РИР в осложненных условиях.

На сегодняшний день существует большое количество составов для РИР. Эффективность каждого состава зависит от пластовых температур, давлений и приемистости интервала изоляции.

Основной объем работ по устранению заколонных перетоков выполняется с применением тампонажных портландцементов, отверждение которых в результате химической реакции минералов с водой сопровождается эффектом контракции, то есть уменьшения абсолютного объема продуктов реакции по сравнению с объемом исходных веществ.

Также при проведении РИР используются различные растворы на основе микроцементов, гелеобразующие и вязкоупругие составы, смолы и т. д.

С целью повышения качества РИР рабочая группа экспертов Научно-Технического Центра «Газпром нефть», проведя предварительное исследование литературы по данному вопросу, приняла решение об испытании расширяющегося тампонажного материала (РТМ) и проведении опытно-промышленных работ (ОПР) на активах ПАО «Газпром нефть» и СП «Салым Петролеум Девелопмент Н.В.».

РАСШИРЯЮЩИЙСЯ ТАМПОНАЖНЫЙ МАТЕРИАЛ (РТМ)

Расширяющийся тампонажный материал — это смесь стандартного портландцемента с расширяющей добавкой, а также различными химическими и минералогическими добавками. В отличие от стандартного цементного раствора РТМ не дает усадки.

Есть два основных способа получения РТМ. При первом способе внутри образующейся структуры цементного камня возникает химическое соединение больше исходного, что приводит к «раздвижению» кристаллов твердеющего цемента и, соответственно, к увеличению его объема. Получение РТМ по первому способу осуществляется путем ввода в тампонажный состав различных добавок: хроматного шлама, каустического магнезита, раствора бишофита, хлористого натрия и хлористого кальция, смеси гипса и глиноземистого цемента, сульфата натрия, высококальциевых зол, оксида алюминия, пилиоксихлорида алюминия, негашеной извести, а также смеси оксида и феррита кальция [1].

Второй способ заключается в увеличении объема тампонажного цемента за счет газообразования. В тампонажном составе в результате химической реакции выделяется газ, пузырьки которого равномерно распределяются по объему цементного раствора, вследствие чего увеличивается общий объем тампонажного состава [2].

Для ОПР было принято решение о применении в качестве расширяющей добавки гидроксида кальция Ca(OH)2, или гашеной извести, исходным сырьем для которого служит зола-унос, образующаяся в результате сжигания твердого топлива на ТЭЦ. По химическому, гранулометрическому и фазово-минералогическому составам зола-унос во многом идентична природному минеральному сырью, представляющему собой тонкодисперсный материал из частиц размером 3–315 мкм.

Тампонажный материал с добавлением гидроксида кальция после гидратации и размещения в запланированном интервале в заколонном пространстве скважины расширяется в процессе образования структуры цементного камня.

МЕХАНИЗМ РАСШИРЕНИЯ

Твердеющая цементная суспензия представляет собой смесь водной фазы и зерен исходного цемента, а также кристаллов новообразований, формирующих пространственный кристаллический каркас. При добавлении в цемент извести (СаО) происходит ее реакция с водой с образованием кристаллов гидроксида кальция Са(ОН)2 (портландита) призматической вытянутой формы. Последние обладают свойством достаточно быстро увеличиваться в объеме, удлиняясь.

Растущие кристаллы раздвигают другие элементы образующейся структуры, приводя к изменению внешних размеров системы. Поскольку кристаллы Са(ОН)2 (портландит) расположены хаотично, то и свободное расширение системы, не ограниченное внешними факторами, происходит равномерно разнонаправленно. При этом несколько возрастает общая пористость системы.

Постепенно прочность пространственного каркаса увеличивается, в нем начинают возникать напряжения, создающие в скважинных условиях кристаллизационное давление цементного камня на ограничивающую поверхность. Возникает механическое давление твердеющего цементного камня на обсадную колонну и стенки скважины.

После набора структурой определенной прочности, а также вследствие значительного снижения скорости реакции гидратации СаО, расширение прекращается. Величина механического давления расширения на ограничивающую поверхность в зависимости от степени обжига извести составляет от 0,6 до 0,8 МПа. Эти данные хорошо согласуются с данными по прочности цементного камня в момент, когда расширение прекращается.


Наглядно процесс расширения стандартного портландцемента можно увидеть на микрофотографиях, предоставленных специалистами Группы Компаний «Сервис Крепления Скважин» (рис. 1, 2).


На рис. 1 представлена поровая структура на основе ПЦТ G-CC-1 в возрасте 48 часов, на рис. 2 — процесс расширения: вытянутые кристаллы Са(ОН)2 «раздвигают» кристаллы цементного камня (10 ч твердения). На рис. 3 показана микроструктура цементного камня РТМ в возрасте 48 часов. Отчетливо видны крупные кристаллы портландита, заполнившие поровое пространство цементного камня.


УСЛОВИЯ И РЕЗУЛЬТАТЫ ОПР

В период с октября 2016 по январь 2017 года на скважинах добывающего фонда филиала «Газпром-нефть-Муравленко» проводились ОПР с подтверждением наличия ЗКЦ по результатам геофизических исследований скважин (ГИС). Всего были выполнены пять скважино-операций. По данным ГИС после проведения РИР было подтверждено отсутствие ЗКЦ на всех пяти скважинах.

Работы проводились в скважинах с умеренными температурами (51–100°С), с линейным расширением тампонажного состава от 8 до 13%. Был подобран состав РТМ с оптимальными реологическими параметрами и положительными физико-механическими показателями, простой в приготовлении в полевых условиях в процессе затворения.

ОПР НА СКВАЖИНЕ СУТОРМИНСКОГО МЕСТОРОЖДЕНИЯ

В скважине Суторминского месторождения с перфорацией пласта БС7 в интервалах 2512–2516 и 2524–2528 м по результатам промыслово-геофизических исследований (ПГИ, азотирование) отмечалось поступление воды через верхние перфорационные отверстия с перетоком с глубины 2457,6 м. Мощность непроницаемых интервалов сверху между верхними водоносным пластом и кровлей пласта БС7 составляет 10 м. Гидроразрыв пласта (ГРП) в скважине не проводился.

Цель РИР — ликвидация заколонного перетока сверху (рис. 4).

Подготовка скважины к проведению РИР осуществлялась по следующему алгоритму:


  • спуск и райбирование эксплуатационной колонны (ЭК) в интервале 2400–2470 м под посадку пакера;
  • отсыпка интервала перфорации до глубины 2513 м;
  • опрессовка ЭК;
  • перфорация спецотверстий (СО) в интервале 2512–2513 м;
  • определение приемистости СО закачкой по ЭК;
  • спуск и посадка технологического пакера на глубине 2442 м.

Основные свойства тампонажного раствора приведены в таблице 1.

ПГИ (азотирование) после проведения работ показали отсутствие ЗКЦ. После завершения ремонта скважина была запущена с дебитом нефти 8,1 т/сут и жидкости — 32,0 м³/сут. Дополнительная добыча нефти с момента проведения составила 3,5 тыс. т при продолжительности эффекта 458 суток.


ОПР НА СКВАЖИНЕ ВЕРХНЕСАЛЫМСКОГО МЕСТОРОЖДЕНИЯ

Далее ОПР были произведены на скважине Верхнесалымского месторождения с большим зенитным углом. По результатам трассерных исследований был выявлен заколонный переток вверх до глубины 3508 м и вниз до глубины 3696 м.

В связи с тем, что пласт AС11.2 перфорирован в интервалах 3608–3622 и 3627–3637 м (общая протяженность интервала перфорации составляет 24 метра) возникла необходимость в ликвидации заколонного перетока сверху и снизу.

Мощность непроницаемых интервалов сверху между верхним водоносным пластом и кровлей пласта AС11.2 составляет 16 м. Мощность непроницаемых интервалов снизу между нижним водоносным пластом и подошвой пласта AС11.2 — 5 м. ГРП на скважине не проводился (рис. 5).


Соответственно результатам ГИС работы были выполнены в два этапа по следующему алгоритму:

  • спуск и райбирование ЭК в интервале предполагаемых работ;
  • перфорация СО в интервале 3661–3662 м;
  • посадка пакера-ритейнера на глубине 3657 м;
  • выполнение первого этапа РИР (ликвидация нижнего перетока);
  • ожидание затвердевания цемента, отбивка забоя; • установка взрыв-пакера на глубине 3598 м;
  • перфорация СО в интервале 3587–3588 м;
  • посадка пакера-ритейнера на глубине 3550 м;
  • выполнение второго этапа РИР (ликвидация верхнего перетока);
  • ожидание затвердевания цемента;
  • нормализация забоя путем разбуривания цементного стакана и пакеров-пробок до глубины 3643 м;
  • опрессовка интервала изоляции на давление опрессовки колонны;
  • реперфорация существующих интервалов;
  • трассерные исследования.


Впоследствии на скважине выполнены работы по закачке РТМ по рецептуре ООО «СКС-Сибирь». Цель работ — устранение заколонного перетока снизу через интервал СО. Всего было приготовлено и закачано 2,0 м³ раствора при конечном давлении 80 атм. Основные свойства цементного раствора представлены в таблице 2. График закачки представлен на рис. 6.


Далее проводились работы по закачке РТМ по рецептуре ООО «СКС-Сибирь» с целью устранения заколонного перетока сверху. Всего было приготовлено и закачано 2,5 м³ раствора при конечном давлении 130 атм. График закачки представлен на рисунке 7.


Результаты ГИС и опрессовки интервала подтвердили ликвидацию ЗКЦ.

После завершения ремонта скважина была запущена с дебитом нефти 44,8 т/сут и жидкости — 60 м³/сут.

На текущий момент эффект продолжается, заметного изменения основных параметров не выявлено.

ВЫВОДЫ

По результатам ОПР технология с применением РТМ для ликвидации заколонных перетоков признана успешной. При этом рекомендуется РТМ с линейным коэффициентом расширения от 8 до 13,5%. Процесс расширения состава не должен продолжаться после завершения загустевания.

На скважинах с заколонными перетоками в обоих направлениях рекомендуется проведение работ в два этапа.

Применение расширяющегося тампонажного материала на основе гидроксида кальция показало высокую эффективность на стадии ОПР, успешно проведенных на месторождениях ПАО «Газпром нефть» и СП «Салым Петролеум Девелопмент Н.В.».

Список сокращений для таблиц

ВСО — водосмесевое соотношение; Температура ст температура статическая; Температура дн температура динамическая;
Вс — единица измерения Бердена — измерение консистенции цементного раствора при определении на кон-систометре под давлением;
ДНС — динамическое напряжение сдвига;
СНС — статистическое напряжение сдвига;
ПВ — пластическая вязкость.

СПИСОК ЛИТЕРАТУРЫ

  1. Куницких А. А. Исследование модифицирующих добавок к тампонажным растворам // Нефтяное хозяйство. — 2016. — № 5. — С. 46–50.
  2. Мелехин А.А., Чернышов С.Е., Турбаков М. С. Расширяющиеся тампонажные составы для ликвидации поглощений при креплении обсадных колонн добывающих скважин // Нефтяное хозяйство. — 2012. — № 3. — С. 50–52

Возврат к списку